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Abstract 

Shifting an oscillatory or a chaotic trajectory to the unstable steady state of a nonlinear system in the presence of stochastic or deterministic 
load disturbances continues to be a nontrivial task. In the present work, two effective strategies for such control needs are presented. The 
control laws employed do not contain the process model parameters explicitly. The suggested strategies are demonstrated on two simulated 
nonlinear reaction systems exhibiting multi-stationarity, limit cycle oscillations, and chaos. 0 1997 Elsevier Science S.A. 
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Model parameter 
Model parameter 
Heat of reaction parameter 
Model parameter 
Load disturbance in x, and x 
Load disturbance in x2 and y 
Load disturbance in x3 and z 
Model parameter 
Damkohler number 
Set point error 
Model parameter 
Model parameter 
Controller gain 
Model parameter 
Model parameter 
Ratio of the rate constants for the series 
reaction (Case study 1) 
Time 
Manipulated variable 
Model variable in Case study 2 
Dimensionless concentration of species A 
Set point for variable x, 
Dimensionless concentration of species B 
Set point for variable x2 
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x3 Dimensionless temperature 
xy Set point for variable x3 
Xlsr x29 x3s Steady state values of x,, x2 and x3 
4 Steady state value of x 
4‘ Model variable in Case study 2 
Ys Steady state value of y 
z Model variable in Case study 2 

ZS Steady state value of z 

4 Control variable 
u, Controller output when setpoint error equal 

to zero 

Greek symbols 

Ratio of heat effects for the series reaction 
Heat transfer coefficient 
Controller gain 
Initial controller gain 
Ratio of the activation energies for the series 
reaction 
Time constant for derivative action 
Time constant for integral action 

2. Introduction 

Control of nonlinear dynamical systems has attractedatten- 
tion in recent years. In general, control of nonlinear systems 
is difficult, and this is especially so for systems exhibiting 
chaotic dynamic behavior. One approach to chaos control, 
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proposed by Ott, Grebori and Yorke (OGY) [ I], stabilizes 
the unstable periodic orbits (UPOs) of the system by apply- 
ing small perturbations in the neighborhood of the desired 
UPO. Several independent control strategies and modified 
forms of the OGY methodology have been proposed since 
then, and used to stabilize UPOs and to suppress chaotic 
dynamics (see, for example, Hubler [ 21, Hunt [ 31, Shinbrot 
et al. [ 4-61, Mehta and Henderson [7], Dressier and Nitsche 
[ 81, Pyragas [9], Qu et al. [lo], Bielawski et al. [ 1 I], 
Paskotaetal. [12],ChenandDong [13]). 

The second approach to controlling the unstable behavior 
of nonlinear systems aims at stabilizing the dynamic trajec- 
tory exactly at the unstable steady state (USS). Since a USS 
repels trajectories in its neighborhood, deriving a control 
algorithm which ensures that the trajectory stays at an USS 
is not trivial. In recent years, Singer et al. [ 141 have dem- 
onstrated experimentally and theoretically that the chaotic 
trajectories can be steadied in a narrow region by using a 
simple on-off control strategy. The model-based parametric 
adaptive control strategy proposed by Vassiliadis [ 151 may 
also be used to stabilize the chaotic trajectories at an USS. 
However, this technique requires a phenomenological or 
empirical process model which in most instances is difficult 
to formulate. The objective of this work is to design and 
demonstrate alternative strategies that do not contain model 
parameters explicitly in the control law for regulating contin- 
uous-time nonlinear systems exactly at an unstable steady- 
state. Towards this goal, two control strategies are proposed 
and successfully employed to control two well--known sim- 
ulated nonlinear reaction systems showing unstable behavior 
such as multi-stationarity, oscillations and chaos. 

3. Control strategies 

Regardless of the type of application under scrutiny, a 
control law must exploit the difference between the desired 
process value, i.e., the set point, and the actual process value 
to drive the latter towards the set point. Some well-known 
control laws that so exploit this difference include the PID 
(proportional-integral-derivative) controller and IMC 
(internal model control), among others. 

A specific expression that has been found to be useful in 
carrying out controller adjustments in nonlinear systems is of 
the form 

du, --$= E(P--X) (1) 

where u,, E and t respectively denote the control parameter, 
controller gain (tuning parameter) and time. The setpoint for 
process variable x is represented by xset and the bracketed 
terms represent the setpoint error e signifying the difference 
between the target state and the actual process output. Eq. 
( 1) with constant E has been used earlier as an adaptive 
controller to adjust a system parameter [ 16,171. Other studies 
employ Eq. ( 1) to control the unstable behaviour as a param- 

eter-adapting mechanism in the framework of model-based 
strategies like Internal Model Control (IMC) [ 18,191. How- 
ever, in these studies, process model parameters appear 
explicitly in the control law and they do not address the 
problem of controlling nonlinear systems exhibiting chaotic 
motion at an unstable steady-state. 

For nonlinear systems exhibiting sustained oscillatory or 
chaotic behavior with reference to the unstable steady state, 
the system error switches sign continuously. Thus to control 
a nonlinear system possessing these characteristics at the 
unstable steady state, Eq. (1) must be modified. Based on 
heuristic reasoning, the suggested modification is 

u,=ee (2a) 

or 

du, d(ee) -=- 
dt dt (2b) 

where E is now a time-varying proportionality factor. Eq. (2) 
can be simplified as 

(2c) 

For separable systems 

6 = 6l.n t) 

and, therefore, Eq. (2~) may be written as 

(3) 

(4) 

where prime denotes the time derivative. 
As may be seen, the right-hand side (rhs) of this controller 

equation contains terms which are proportional to the setpoint 
error e as well as its time derivative. The equation is nonau- 
tonomous in character since the gain terms ( l J’( t) and 
eOf( t) ) are continuously adapted in relation with time. For 
the simple choice off(t) = t, and correspondingly f’ (t) = 1, 
the gain, e&‘(t), becomes independent of time while the 
gain ( EJ( t) ) for the derivative action retains its time depend- 
ence. Eq. (4) can be viewed as a linear proportional controller 
where the gain is a function of time. The setpoint error can 
be defined either as 

e = (-ppx) 

or as 

(5) 

e= k(xF’-.q) (6) 
i= I 

where n denotes the number of system variables. It is well 
known that incorporating integral action improves control 
performance and eliminates offset. We therefore supplement 
the control action of Eq. (4) by adding an integral term 
according to 

(7) 
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Table 1 
Characterization of steady states a for systems in case studies I and 2 

Set. No. Parameter values XI., x2.5 x3.7 Stability 

Case Stud?; I 
I 

II 

III 

Da=.06,S=.0005,~=0, rc=l, 
a=O.426,p=7.7, B=55.0 

Da=0.26,S=0.5.~=0,K= 1, 
1y=O.426, @=7.7, B=57.77 
Same as Set II except 
p=7.9999 

0.8965 0.1034 0.6540 Stable 
0.6595 0.3404 2.1523 Unstable 
0.0378 0.9501 6.0500 Unstable 
0.0729 0.1259 3.890 Stable limit cycle 

0.08 19 0.1391 3.7627 Chaotic 

Case Study 2 

I a=0.5.S=3,c=5, C=O.Ol, 
j=o.5,g=0.6.f=0.3,a=0.51, 
I= 1.339 

x5 4’5 is 

1.24855 1.8705 0.3015 
2.2462 0 1.7455 
7.7463 0 4.5506 

Unstable 
Unstable 
Unstable 

a Denoted by subscript s. 
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Fig. 1. Plots showing the oscillatory (a, b) and chaotic (c, d) dynamics possessed by the nonisothermal CSTR system for parameters defined by set (2) and 
(3) respectively. (a) and (c) depict the phase plane plots, while (b) and (d) show the corresponding x, profiles in time. 
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In essence, the control law given by Eq. (7) corresponds to 
the controller Eq. (4) augmented with a double integrator. 
The two controllers defined by Eqs. (4) and (7) are the final 

controller expressions and they will henceforth be referred to 
as controller- 1 and controller-2, respectively. Note that these 
controllers do not contain the process model parameters 
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Fig. 2. Plots of process outputs (a, c) and controller outputs (b, d) obtained with controller-l (a, b) and controller-, 7 (c, d). The plots pertain to the control 

objective 1 where the setpoint is a USS belonging to the multi-stationary region (see Table 1, parameter set 1). (a) and (b) show the time profiles of process 
variable x3 and controller- 1 output a,. (c) and (d) depict the time profiles of the same variables but for controller-2. 

explicitly, In the following sections, the performance of these 
controllers is tested on two simulated reaction systems gov- 
erned by a set of coupled nonlinear ordinary differential 
equations. 

4. Case study 1 cl% x= -x,+BDux,exp[x3/( 1 +eAx3)l 

Consider the reactor model describing the dynamics of an 
exo-, endothermic reaction in a jacketed continuous stirred 
tank reactor (CSTR). The reaction is assumed to be first- 
order irreversible and consecutive of the type A + B + C and 
has been studied in detail by Kahlert et al. [ 201. The reactor 
model exhibits diverse dynamic features such as multi-sta- 
tionarity, limit cycle oscillations and even chaos for certain 
parameter values. The corresponding dimensionless mass 
(for species A and B) and energy balance equations are 

z= 1 -x1 -Dax,exp[x31( 1 +e,+x3)] 

2= -x,+Dax,exp[xJ( 1 +eAx3)] 

- DaSx,exp [ KXJ ( 1 + l Ax3) I (9) 

-DaBaSx,exp[KX3/(1+EAx3)] -,S(x,-x3,) (10) 

Here, x, and x2 represent the dimensionless concentrations of 
species A and B, respectively, while x3 denotes the dimen- 
sionless CSTR temperature. The definitions of other para- 
meters can be found in Kahlert et al. [ 201. The parameterx,, 
represents the reactor coolant temperature. For control pur- 
poses, we define the manipulated control variable, ur, as the 
deviation from the reference value of x~~. Consequently, the 
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Fig. 3. Plots of process outputs (a, c) and controller outputs (b, d) obtained with controller-l (a, b) and controller-2 (c, d) The plots pertain to objective 2 
where the setpoint is the unique USS exhibiting limit cycle behavior. (a) and (b) show the time profiles of process variable x3 and controller- 1 output a,. (c) 
and (d) depict the time profiles of the same variables but for controller-2. 

model equations in the presence of controller action and load 
disturbances become 

;= 1 -x, -Dux,exp[x,l( 1 +eAx3)] +d, 

h2 z= -x,+Dax,exp[x,l( 1 +eAxJ)] 

(11) 

-DaSx,exp[Kx,l( 1 +eAx3)] +d2 (12) 

d-G x= -xj+BDux,exp[xg/(l+eAx3)] 

- DaBaSx,exp [ KXJ ( 1 + l Ax3) ] 

-PC%--4 +@4+4 (13) 

where the load disturbances in feed compositions are denoted 
by d, and d2 and that in temperature is represented by d3. 

To fix up the controller goal, we can utilize the steady state 
and linear stability analysis of the model equations Eqs. ( 8)- 

( 10). Such an analysis has been performed by Bandyopa- 
dhyay [ 2 1 ] and the parameter values for which the system 
shows multi-stationarity, oscillations, and chaos are listed in 
Table 1. For parameter set 1, the system admits three steady 
states of which two are unstable. The parameter sets II and 
III correspond to unique USSs for which the system exhibits 
limit cycle oscillations and chaotic behavior, respectively. To 
test the performance of the proposed controllers, four repre- 
sentative control objectives pertinent to the operation of 
CSTR have been identified. 

The numerical integration of system and controller equa- 
tions has been performed using Gear’s routine with the sam- 
pling interval of 0.0001 time units. In both the case studies, 
the termf( t) appearing in the definition of the time varying 
proportionality factor E ( = l 0f( t) ) is set asf( t) = t (resulting 
inf ’ ( r) = 1) . Also, the control parameters e0 and l t were set 
equal to unity. In general, the controller parameters must be 
found by trial and error but experience suggests that the sys- 
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Fig. 4. Plots of process outputs (a, c) and controller outputs (b, d) obtained with controller-l (a, b) and controller-2 (c, d). The plots pertain to objective 3 
where the setpoint is the unique USS responsible for chaotic motion. (a) and (b) show the time profiles of process variable x3 and controller- 1 output u,. (c) 
and (d) depict the time profiles of the same variables but for controller-2. 

tern performance is not excessively sensitive to their magni- 
tudes. Fig. 1 (a) and (c), and (b) and (d), respectively, show 
the phase plane plots and X, - t profiles of the uncontrolled 
CSTR operation (Eqs. (8)-( 10) ) corresponding to param- 
eter sets II and III. 

For control simulations, the setpoint error derivative term 
(deldt) was evaluated using the four-point backward finite- 
difference scheme, and the set point error e was evaluated as 

e= ($c x,) + (XT’-x*) + (xy’-xj) (14) 

Evaluation of the set point error in this way is possible only 
when the steady state values of the system variables X, and 
xz corresponding to the set point (x7’) of the controlled var- 
iable are known a priori. In the absence of a process model, 
these steady state values are not known in advance and, there- 
fore, the set point error is evaluated in accordance with Eq. 
(5) as 

e= (,x+x3) (15) 

where x3 refers to the CSTR temperature. In the following, 
the performance of controllers 1 and 2 corresponding to the 
four representative control objectives is reported. 

1. Controlling the system at an unstable steady state in the 
multiplicity region 

We have chosen the process setpoint as the unstable steady 
state in the multiplicity region (et=0.0378, Yt’=O.9501 
and .xyt=6.05). The controller goal is to shift the process 
operating at an arbitrary point (xIO = 0.04, xzO= 0.9, 
X 30 = 5.75) to the setpoint and maintain it at that state. Fig. 2 
shows the plots due to control actions of controller-l and 
controller-2, wherein Fig. 2(a) and (c) show the respective 
x, - t profiles. The corresponding controller outputs are plot- 
ted in Fig. 2(b) (controller- 1) and (d) (controller-2). Note 
that the control was activated right from time t = 0. It can be 
seen from these figures that both the controllers are capable 
of shifting the process from an arbitrary point to the target 
state and also sustaining it at that point. Looking at the respec- 
tive controlled trajectories, it is also observed that the action 
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Fig. 5. The description of traiectories is identical to Fig. 4 except that the process now contains stochastic load disturbance (d3) obeying Gaussian distribution 
with mean and standard deviation equal to 0 and 0.25 respectively. 

of controller-2 is smoother (albeit slower) as compared to 
that exerted by controller- 1. 

2. Controiiing the system at the unique unstable steady 
state responsible for limit cycle oscillations 

For this case, the model parameters corresponding to the 
parameter set II for which the system exhibits sustained oscil- 
latory behavior (stable limit cycle) were selected. The con- 
troller is first required to shift the process trajectory from an 
arbitrarily selected initial state; xl0 = 0.08, xl0 = 0.103 and 
xjg= 3.654 to the target state; X, =0.0729, x2, =0.1259, 
x3, = 3.89. The controllers in the same operation are also 
required to regulate the trajectory at the setpoint representing 
the unique USS. The simulation results for such an objective 
are shown in Fig. 3(a)-(d). It can be seen that both the 
controllers exert excellent control actions and no offsets are 
observed. 

3. Controlling the system ar the unique USS responsible 
for chaotic motion 

In this objective, the controllers, with the system beginning 
at an arbitrary point in the phase space, are required to sta- 

bike the chaotic trajectory (shown in Fig, 1 (c) and (d) ) 
exactly at the corresponding unique LJSS. For simulating 
controller actions, the parameter set III is used with the set- 
point:~‘=0.0819,$=0.139I andxyr=3.7627.Fig. 4(a) 
and (b), and (c) and (d j show the xX and u, time profiles in 
the presence of actions delivered by controllers 1 and 2, 
respectively. These plots indicate well that both the control- 
lers fulfill the control objective of stabilizing chaotic motion 
at the USS without allowing any offset. 

4. Controlling the system at USS responsible for chaotic 
motion in the presence of stochastic and deterministic load 
disturbances 

The ability of the proposed controllers to impart the desired 
control action in the presence of stochastic load disturbances 
was tested by incorporating random noise at every integration 
step in the time evolution equation for reactor temperature 
(Eq. ( 13)). Thus the load disturbance term d3 assumes ran- 
dom values dicrated by the Gaussian distribution having a 
mean and standard deviation of 0 and 0.25, respectively. The 
process and controller outputs in the presence of such random 
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Fig. 6. Same as Fig. 4 but in the presence of fixed (deterministic) load disturbance of unit magnitude (d3 =0) 

disturbances are shown in Fig. 5. In addition, the results when 
a constant (deterministic) load disturbance of unit magnitude 
is added ( d3 = 1) are depicted in Fig. 6(a)-(d) . As can be 
noted from Figs. 5 and 6, the controllers deliver excellent 
action in the presence of either type of load disturbances. 

5. Case study 2 

Here, we consider the kinetic model satisfying the mass- 
action law studied by Gaspard and Nicolis [ 22 ] and Nicolis 
[ 231. The model equations which in certain parameter space 
are known to exhibit homoclinic chaos are 

dz 1 -&= 2 (x-az3+6z2-cz) +d, 
0 

(17) 

(18) 

These equations for the parameter values shown in Table 1 
and in the absence of load disturbances (d, = d2 =d3 = 0) 
possess three steady states all of which have been found to 
be unstable. The resultant chaotic behavior is depicted in 
Fig. 7. Computer simulations involving control are conducted 
analogous to that described for Case study 1 wherein the 
control variable u, now signifies the deviation in the model 
parameter g. Thus, in the presence of control action, Eq. ( 16) 
is modified to 

dx 
&=n(&-&z+g+u,) +d, (19) 

The performance of controllers 1 and 2 in controlling the 
chaotic dynamics exhibited by Eqs. ( 16)-( 18) has been 
studied by setting up two relevant objectives and the results 
of such simulations are described below. 

1. Controlling the system trajectory at a USS in the chaotic 
parameter regime 

This controller task is the same as objective (3) in Case 
study 1. The process setpoint is chosen as the first USS: 



J.K. Bandyopadhyay et al. /Chemical Engineering Journal 67 (1997) 103-I 14 

2.50 

2.00 

x 1.50 

1 .oo 

0.50 

0.00 4 I  I  I1 111 I , ,  1 I , ,  1 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

0.00 50.00 100.00 15 
time 

Fig. 7. The phase plane plot (a) showing the chaotic attractor in the x-y plane of the system analyzed as case study 2. (b) depicts the x time profile corresponding 

111 

to (a). 

1.32 

1.30 

1.26 

X 

1.24 

1.22 

1.20 

1.18 
( 

1.36 

c 

0.10 

0.05 

d 

8.00 l( 
tima 

1.32 

1.28 

X 

1.24 - 

1.16 -m,.,,,,,,,,,,,,n,,,,,,.m,,,,,,..,,,~,,,~,,r 
0.00 2.00 4.00 6.00 8.00 l( 

time 
8.00 11 

time 

Fig. 8. Plots of process outputs (a, c) and controller outputs (b, d) obtained with controller-l (a, b) and controller-2 (c, d). The plots pertain to objective 1 
of case study 2 where the setpoint is an USS in the multiplicity region. (a) and (b) show the time profiles of x and controller- 1 output u,. (c j and (d) depict 
the time profiles of the same variables but for controller-2. 

0.08 

0.04 

0.00 

"t 

-0.04 

-0.08 

XJ 



112 J.K. Bandyopadhyay et al. /Chemical Engineering Journal 67 (1997) 103-114 

1.16 

i 

’ 120hm 
time 

1.36 

1.32 

1.26 

x 1.24 

1.20 

1.16 

1.12 
o.oc 

1~~,~~~1’,1~~~~~~~.,,~1l1~~,r 
,  5.00 10.00 15.00 21 

time 

-0.60 

-0.80 j4 
0.00 5.00 10.00 15.00 

time 

:::i”- 

-0.40 
1 

-0.60 
Ij 

-O.YJ-c 
ttme 

10 
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X, = 1.24855, ys = 1.8705, and zs = 0.3015. The results of the 
executed control actions when the system begins at an arbi- 
trary point are shown in Fig. 8(a)-(d) which clearly suggest 
that the control objective is fulfilled satisfactorily. That is, 
the controllers do stabilize the system exactly at the USS and 
no offsets are observed. 

2. Controlling the system at a USS in the chaotic parameter 
regime in the presence of stochastic load disturbance 

To test the robustness of the proposed controllers, Gaussian 
random noise with mean=0 and standard deviation=0.15 
was added to Eq. ( 16). Thus, the d, term assumes random 
values; its update takes place at every 0.001 time units (inte- 
gration step). As can be seen from Fig. 9(a) and (c) , both 
the controllers again exert excellent control action in the 
presence of continuous random load disturbances. 
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6. Comparison with other controllers 

For comparison purposes, we conducted simulations 
involving PID control and the fixed gain variants of control- 
lers 1 and 2. The genera1 form of the conventional PID con- 
troller is 

u,=tl;+K, e+l/e dt+T d” 
71 Ddt (20) 

where K, denotes the controller gain and 8, refers to the 
controller output when the setpoint error e is zero. The inte- 
gral and derivative time constants are represented by T, and 
TV, respectively. 

The results of simulation with PID control for Case study 
I are shown in Fig. 10. While PID control is shown to be 
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time 
Fig. 11. Plots of process output (a) and controller output (b) obtained with fixed-gain controller-2. The plots pertain to the control objective 3 for the nonlinear 
CSTR process where the setpoint is the unique USS responsible for chaotic motion. 
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Fig. 12. Process (a) and controller (b) outputs (Case study 2: objective 1) when the gains of the proportional and derivative terms (Eq. 4) are kept fixed. 
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capable of restoring the chaotic system to the desiredunstable 
steady-state as shown in Fig. lO( a), the system performance 
is extremely sensitive to the proportional gain. For example, 
for a small change (from 0.15 to 0. I 1) in the proportional 
gain, the ability of the control system to achieve the desired 
objective is lost, as shown in Fig. lO( b). Furthermore, to find 
the suitable controller parameters has been difficult. 

We also evaluated the performance of the proposed con- 
trollers when the respective gains of the proportional, deriv- 
ative, and integral terms appearing on the right-hand sides of 
Eqs. (4) and (7) were held constant. The motivation behind 
such an exercise was to check the efficacy of proposed con- 
trollers in the absence of gain-adaptation. In these simula- 
tions, the proportional, derivative, and integral terms of the 
proposed controllers were studied separately and in combi- 
nation with each other. One of the possible fixed-gain feed- 
back controllers with proportional-only terms on its rhs has 
the form equivalent to Eq. ( 1) . It was found that none of the 
controllers with their gains fixed can satisfy any of the four 
control goals that are set for the system representing the 
nonisothermal CSTR. For example, the fixed gain equivalent 
of controller-2 when employed towards the objective (3) 
gives rise to x, and u, profiles shown in Fig. 11. It can be seen 
that the controller output oscillates resulting in overall oscil- 
latory system behavior. However, for the reaction model stud- 
ied in Case study 2, it was found that only a particular 
combination, the one comprising the proportional and deriv- 
ative terms, with their gains fixed, is capable of stabilizing 
the system trajectory at the USS represented by x, = 1.24855, 
ys = 1.8705 and z, = 0.3015. The results of this simulation are 
portrayed in Fig. 12. It is possible to compare the control 
action delivered by the fixed gain controller (Fig. 12 (a) and 
(b) ) with those effected by the controllers 1 and 2 
(Fig. 8(a)-(d) ). It is noticed easily that the actions of con- 
trollers 1 and 2 are much smoother and the set point is reached 
earlier. 

7. Conclusion 

In this paper, the modified forms of the feedback control 
mechanism introduced as Eqs. (4) and (7) have been 
employed to control successfully the continuous nonlinear 
dynamical systems exactly at their unstable steady states. The 
performance of these controllers has been evaluated by con- 
sidering two reaction systems exhibiting multi-stationarity, 
oscillations and even chaos. Simulation results clearly indi- 
cate that the proposed controllers provide a very good alter- 

native for controlling the unstable dynamics that arise due to 
unstable steady states. The proposed gain-adapting control- 
lers are capable of fast response and fulfill the control objec- 
tives even in the presence of deterministic or stochastic load 
disturbances. Although the proposed controllers employ a 
simple time-dependent linear variation of the controller gain, 
in principle, it is possible to formulate other gain-adapting 
strategies. 

The characteristic behavior of the proposed controllers as 
can be perceived from Eqs. (4) and (7) is that the manipu- 
lated variable u,, when the control action is switched on moves 
rapidly under the influence of large magnitudes of e and del 
dt. As time progresses, the system evolves towards the set- 
point, and as a result the setpoint error term e and, conse- 
quently, deldt tend to zero. At this stage t is much larger 
compared to e and its time-derivative (deldt) , which again 
results in the faster system movement towards the setpoint. 
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